Skip to contents

Preliminary

Consider the following setting:

  • Gaussian graphical model (GGM) assumption:
    The data Xn×pX_{n \times p} consists of independent and identically distributed samples X1,,XnNp(0,Σ)X_1, \dots, X_n \sim N_p(0,\Sigma).

  • Disjoint group structure:
    The pp variables can be partitioned into disjoint groups.

  • Goal:
    Estimate the precision matrix Ω=Σ1=(ωij)p×p\Omega = \Sigma^{-1} = (\omega_{ij})_{p \times p}.

Bi-level penalty

Ω̂=arg minΩ0{logdet(Ω)+tr(SΩ)+αPindividual+(1α)Pgroup}, \hat{\Omega} = \operatorname*{arg\,min}_{\Omega \succ 0} \left\{ -\log\det(\Omega) + \operatorname{tr}(S\Omega) + \alpha P_{\text{individual}} + (1-\alpha) P_{\text{group}} \right\}, where:

  • α[0,1]\alpha \in [0,1] controls the balance between element-wise and block-wise penalties.
  • PindividualP_{\text{individual}} denotes the element-wise individual penalty term.
  • PgroupP_{\text{group}} denotes the block-wise group penalty term.

Penalties

The package grasps estimates precision matrices using the following penalties:

  1. Adaptive lasso (Zou 2006; Fan, Feng, and Wu 2009)

Pindividual=λi,j|ωij||vij|andPgroup=λg,gΩgg2Vgg2 P_{\text{individual}} = \lambda\sum_{i,j}\frac{\vert\omega_{ij}\vert}{\vert v_{ij}\vert} \quad\text{and}\quad P_{\text{group}} = \lambda\sum_{g,g^\prime}\frac{\Vert\Omega_{gg^\prime}\Vert_2}{\Vert V_{gg^\prime}\Vert_2}

  1. Lasso (Tibshirani 1996; Friedman, Hastie, and Tibshirani 2008)

Pindividual=λΩ1andPgroup=λg,gΩgg2 P_{\text{individual}} = \lambda\Vert\Omega\Vert_1 \quad\text{and}\quad P_{\text{group}} = \lambda\sum_{g,g^\prime}\Vert\Omega_{gg^\prime}\Vert_2

  1. Minimax concave penalty (MCP) (Zhang 2010)

Pindividual=i,jξλ,γ(|ωij|)andPgroup=g,gξλ,γ(Ωgg2) P_{\text{individual}} = \sum_{i,j}\xi_{\lambda,\gamma}(\vert\omega_{ij}\vert) \quad\text{and}\quad P_{\text{group}} = \sum_{g,g^\prime}\xi_{\lambda,\gamma}(\Vert\Omega_{gg^\prime}\Vert_2)

  1. Smoothly clipped absolute deviation (SCAD) (Fan and Li 2001; Fan, Feng, and Wu 2009)

Pindividual=i,jψλ,γ(|ωij|)andPgroup=g,gψλ,γ(Ωgg2) P_{\text{individual}} = \sum_{i,j}\psi_{\lambda,\gamma}(\vert\omega_{ij}\vert) \quad\text{and}\quad P_{\text{group}} = \sum_{g,g^\prime}\psi_{\lambda,\gamma}(\Vert\Omega_{gg^\prime}\Vert_2)

where:

  • Ωgg\Omega_{gg^\prime} denotes the submatrix of Ω\Omega with the rows from group gg and columns from group gg^\prime.

  • The norms are defined as Ω1=i,j|ωij|andΩ2=ΩF=i,j|ωij|2=tr(ΩΩ). \Vert\Omega\Vert_1 = \sum_{i,j} \vert \omega_{ij} \vert \quad\text{and}\quad \Vert\Omega\Vert_2 = \Vert\Omega\Vert_F = \sqrt{\sum_{i,j} \vert\omega_{ij}\vert^2} = \sqrt{\operatorname{tr}(\Omega^\top\Omega)}.

  • λ>0\lambda > 0 is a regularization parameter.

  • V=(vij)p×pV = (v_{ij})_{p \times p} is a matrix of adaptive weights, which is the estimate from penalty = "lasso".

  • ξλ,γ\xi_{\lambda,\gamma} is the penalty function of MCP.

  • ψλ,γ\psi_{\lambda,\gamma} is the penalty function of SCAD.

Reference

Fan, Jianqing, Yang Feng, and Yichao Wu. 2009. “Network Exploration via the Adaptive LASSO and SCAD Penalties.” The Annals of Applied Statistics 3 (2): 521–41. https://doi.org/10.1214/08-aoas215.
Fan, Jianqing, and Runze Li. 2001. “Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties.” Journal of the American Statistical Association 96 (456): 1348–60. https://doi.org/10.1198/016214501753382273.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2008. “Sparse Inverse Covariance Estimation with the Graphical Lasso.” Biostatistics 9 (3): 432–41. https://doi.org/10.1093/biostatistics/kxm045.
Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society: Series B (Methodological) 58 (1): 267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
Zhang, Cun-Hui. 2010. “Nearly Unbiased Variable Selection Under Minimax Concave Penalty.” The Annals of Statistics 38 (2): 894–942. https://doi.org/10.1214/09-AOS729.
Zou, Hui. 2006. “The Adaptive Lasso and Its Oracle Properties.” Journal of the American Statistical Association 101 (476): 1418–29. https://doi.org/10.1198/016214506000000735.