Provide a collection of statistical methods to estimate a precision matrix.
Usage
spice(
X,
method,
base = "cov",
n = NULL,
lambda = NULL,
nlambda = 20,
lambda.min.ratio = 0.01,
gamma = NA,
initial = "glasso",
pkg = "glasso",
crit = "CV",
fold = 5,
ebic.tuning = 0.5,
cores = 1
)Arguments
- X
An \(n \times p\) data matrix with sample size \(n\) and dimension \(p\).
A \(p \times p\) sample covariance/correlation matrix with dimension \(p\).
- method
A character string specifying the statistical method for estimating precision matrix. Available options include:
"glasso": Graphical lasso (Friedman et al. 2008) .
"ridge": Graphical ridge (van Wieringen and Peeters 2016) .
"elnet": Graphical elastic net (Zou and Hastie 2005) .
"clime": Constrained L1-minimization for inverse (covariance) matrix estimation (Cai et al. 2011) .
"tiger": Tuning-insensitive graph estimation and regression (Liu and Wang 2017) , which is only applicable when
Xis the \(n \times p\) data matrix."adapt": Adaptive lasso (Zou 2006; Fan et al. 2009) .
"atan": Arctangent type penalty (Wang and Zhu 2016) .
"exp": Exponential type penalty (Wang et al. 2018) .
"mcp": Minimax concave penalty (Zou 2006) .
"scad": Smoothly clipped absolute deviation (Fan and Li 2001; Fan et al. 2009) .
- base
A character string (default = "cov") specifying the calculation base:
"cov": The covariance matrix.
"cor": The correlation matrix.
This is only applicable when
Xis the \(n \times p\) data matrix.- n
An integer (default = NULL) specifying the sample size. This is only required when the input matrix
Xis a \(p \times p\) sample covariance/correlation matrix with dimension \(p\).- lambda
A non-negative numeric vector specifying the grid for the regularization parameter. The default is
NULL, which generates its ownlambdasequence based onnlambdaandlambda.min.ratio. Formethod = "clime"combined withpkg = "clime", thelambdasequence is based onnlambda,lambda.minandlambda.max.- nlambda
An integer (default = 20) specifying the number of
lambdavalues to generate whenlambda = NULL.- lambda.min.ratio
A numeric value > 0 (default = 0.01) specifying the fraction of the maximum
lambdavalue \(\lambda_{\max}\) to generate the minimumlambda\(\lambda_{\min}\). Iflambda = NULL, alambdagrid of lengthnlambdais automatically generated on a log scale, ranging from \(\lambda_{\max}\) down to \(\lambda_{\min}\).- gamma
A numeric value specifying the additional parameter for the chosen
method. Default values:"elnet": A sequence from 0.1 to 0.9 with increments of 0.1
"adapt": 0.5
"atan": 0.005
"exp": 0.01
"mcp": 3
"scad": 3.7
- initial
A \(p \times p\) matrix or a \(p \times p \times \mathrm{npara}\) (the number of all combinations of
lambdaandgamma) array specifying the initial estimate formethodset to"atan","exp","scad", and"mcp"; or specifying \(\tilde{\Omega}\) of the adaptive weight formethod = "adapt", calculated as \(\lvert\tilde{\omega}_{ij}\rvert^{-\gamma}\), where \(\tilde{\Omega} := (\tilde{\omega}_{ij})\). Some options are also offered when a character string is provided (default = "glasso"), including:"glasso": Use the precision matrix estimate derived from the graphical lasso.
"invS": Use the inverse calculation base matrix if the matrix is invertible.
"linshrink": Use the precision matrix estimate derived from Ledoit-Wolf linear shrinkage estimator of the population covariance matrix (Ledoit and Wolf 2004) .
"nlshrink": Use the precision matrix estimate derived from Ledoit-Wolf non-linear shrinkage estimator of the population covariance matrix (Ledoit and Wolf 2015; Ledoit and Wolf 2017) .
- pkg
A character string specifying the package option to use. The available options depend on the chosen
method:For
method = "glasso":"ADMMsigma": The function from
ADMMsigma."CovTools": The function from
PreEst.glasso."CVglasso": The function from
CVglasso."Glarmadillo": The function from
glarma."glasso": The function from
glasso."GLassoElnetFast": The function from gelnet.
"glassoFast": The function from
glassoFast."huge": The function from
huge.glasso.
For
method = "ridge":"ADMMsigma": The function from
RIDGEsigma."GLassoElnetFast": The function from gelnet.
"porridge": The function from
ridgePgen."rags2ridges": The function from
ridgeP.
For
method = "elnet":For
method = "clime":For
method = "tiger":"flare": The function from
sugm."huge": The function from
huge.tiger.
For
methodset to"adapt","atan","exp","scad", and"mcp":"glasso": The function from
glasso."GLassoElnetFast": The function from gelnet.
"glassoFast": The function from
glassoFast.
- crit
A character string (default = "CV") specifying the parameter selection method to use. Available options include:
"AIC": Akaike information criterion (Akaike 1973) .
"BIC": Bayesian information criterion (Schwarz 1978) .
"EBIC": extended Bayesian information criterion (Foygel and Drton 2010) .
"HBIC": high dimensional Bayesian information criterion (Wang et al. 2013; Fan et al. 2017) .
"CV": k-fold cross validation with negative log-likelihood loss.
- fold
An integer (default = 5) specifying the number of folds used for
crit = "CV".- ebic.tuning
A numeric value in [0, 1] (default = 0.5) specifying the tuning parameter to calculate for
crit = "EBIC".- cores
An integer (default = 1) specifying the number of cores to use for parallel execution.
Value
An object with S3 class "spice" containing the following components:
- hatOmega_opt
The estimated precision matrix.
- lambda_opt
The optimal regularization parameter.
- gamma_opt
The optimal hyperparameter.
- hatOmega
A list of estimated precision matrices for
lambdagrid andgammagrid.- lambda
The actual lambda grid used in the program, corresponding to
hatOmega.- gamma
The actual gamma grid used in the program, corresponding to
hatOmega.- CV.loss
Matrix of CV losses, with rows for CV folds and columns for parameter combinations, when
crit = "CV".- IC.score
The information criterion score for each parameter combination when
critis set to"AIC","BIC","EBIC", or"HBIC".
Note
For method = "tiger", the estimation process solely relies on the raw
\(n \times p\) data X and does not utilize the argument base.
This argument is not applicable for method = "tiger" and will have
no effect if provided.
References
Akaike H (1973).
“Information Theory and an Extension of the Maximum Likelihood Principle.”
In Petrov BN, Csáki F (eds.), Second International Symposium on Information Theory, 267–281.
Akad\'emiai Kiad\'o, Budapest, Hungary.
Cai TT, Liu W, Luo X (2011).
“A Constrained \(\ell\)1 Minimization Approach to Sparse Precision Matrix Estimation.”
Journal of the American Statistical Association, 106(494), 594–607.
doi:10.1198/jasa.2011.tm10155
.
Fan J, Feng Y, Wu Y (2009).
“Network Exploration via the Adaptive LASSO and SCAD Penalties.”
The Annals of Applied Statistics, 3(2), 521–541.
doi:10.1214/08-aoas215
.
Fan J, Li R (2001).
“Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties.”
Journal of the American Statistical Association, 96(456), 1348–1360.
doi:10.1198/016214501753382273
.
Fan J, Liu H, Ning Y, Zou H (2017).
“High Dimensional Semiparametric Latent Graphical Model for Mixed Data.”
Journal of the Royal Statistical Society Series B: Statistical Methodology, 79(2), 405–421.
doi:10.1111/rssb.12168
.
Foygel R, Drton M (2010).
“Extended Bayesian Information Criteria for Gaussian Graphical Models.”
In Lafferty J, Williams C, Shawe-Taylor J, Zemel R, Culotta A (eds.), Advances in Neural Information Processing Systems 23 (NIPS 2010), 604–612.
Friedman J, Hastie T, Tibshirani R (2008).
“Sparse Inverse Covariance Estimation with the Graphical Lasso.”
Biostatistics, 9(3), 432–441.
doi:10.1093/biostatistics/kxm045
.
Ledoit O, Wolf M (2004).
“A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices.”
Journal of Multivariate Analysis, 88(2), 365–411.
doi:10.1016/S0047-259X(03)00096-4
.
Ledoit O, Wolf M (2015).
“Spectrum Estimation: A Unified Framework for Covariance Matrix Estimation and PCA in Large Dimensions.”
Journal of Multivariate Analysis, 139, 360–384.
doi:10.1016/j.jmva.2015.04.006
.
Ledoit O, Wolf M (2017).
“Numerical Implementation of the QuEST Function.”
Computational Statistics & Data Analysis, 115, 199–223.
doi:10.1016/j.csda.2017.06.004
.
Liu H, Wang L (2017).
“TIGER: A Tuning-Insensitive Approach for Optimally Estimating Gaussian Graphical Models.”
Electronic Journal of Statistics, 11(1), 241–294.
doi:10.1214/16-EJS1195
.
Schwarz G (1978).
“Estimating the Dimension of a Model.”
The Annals of Statistics, 6(2), 461–464.
doi:10.1214/aos/1176344136
.
van Wieringen WN, Peeters CFW (2016).
“Ridge Estimation of Inverse Covariance Matrices from High-Dimensional Data.”
Computational Statistics & Data Analysis, 103, 284–303.
doi:10.1016/j.csda.2016.05.012
.
Wang L, Kim Y, Li R (2013).
“Calibrating Nonconvex Penalized Regression in Ultra-High Dimension.”
The Annals of Statistics, 41(5), 2505–2536.
doi:10.1214/13-AOS1159
.
Wang Y, Fan Q, Zhu L (2018).
“Variable Selection and Estimation using a Continuous Approximation to the \(L_0\) Penalty.”
Annals of the Institute of Statistical Mathematics, 70(1), 191–214.
doi:10.1007/s10463-016-0588-3
.
Wang Y, Zhu L (2016).
“Variable Selection and Parameter Estimation with the Atan Regularization Method.”
Journal of Probability and Statistics, 2016, 6495417.
doi:10.1155/2016/6495417
.
Zou H (2006).
“The Adaptive Lasso and Its Oracle Properties.”
Journal of the American Statistical Association, 101(476), 1418–1429.
doi:10.1198/016214506000000735
.
Zou H, Hastie T (2005).
“Regularization and Variable Selection via the Elastic Net.”
Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2), 301–320.
doi:10.1111/j.1467-9868.2005.00527.x
.
