Compute the Ledoit-Wolf shrinkage estimator for the covariance or correlation matrix.
Arguments
- X
A data matrix.
- method
A character string (default = "linshrink") specifying the method used in shrinkage, includes:
"linshrink": linear shrinkage (Ledoit and Wolf 2004) .
"nlshrink": non-linear shrinkage (Ledoit and Wolf 2015; Ledoit and Wolf 2017) .
See
linshrink_cov
andnlshrink_cov
for details.- res
A character string (default = "cov") specifying the result matrix to be obtained, either the covariance matrix ("cov") or the correlation matrix ("cor").
References
Ledoit O, Wolf M (2004).
“A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices.”
Journal of Multivariate Analysis, 88(2), 365–411.
doi:10.1016/S0047-259X(03)00096-4
.
Ledoit O, Wolf M (2015).
“Spectrum Estimation: A Unified Framework for Covariance Matrix Estimation and PCA in Large Dimensions.”
Journal of Multivariate Analysis, 139, 360–384.
doi:10.1016/j.jmva.2015.04.006
.
Ledoit O, Wolf M (2017).
“Numerical Implementation of the QuEST Function.”
Computational Statistics & Data Analysis, 115, 199–223.
doi:10.1016/j.csda.2017.06.004
.