Compute the derivative of the specified non-convex regularization penalty.
Arguments
- penalty
A character string specifying the non-convex penalty to use. Available options include:
"adapt": adaptive lasso (Zou 2006; Fan et al. 2009) .
"atan": arctangent type penalty (Wang and Zhu 2016) .
"exp": exponential type penalty (Wang et al. 2018) .
"mcp": minimax concave penalty (Zou 2006) .
"scad": smoothly clipped absolute deviation (Fan and Li 2001; Fan et al. 2009) .
- Omega
The precision matrix.
- lambda
A scalar specifying the regularization parameter.
- gamma
A scalar specifying the hyperparameter for the penalty function. The defaults are:
"adapt": 0.5
"atan": 0.005
"exp": 0.01
"mcp": 3
"scad": 3.7
References
Fan J, Feng Y, Wu Y (2009).
“Network Exploration via the Adaptive LASSO and SCAD Penalties.”
The Annals of Applied Statistics, 3(2), 521–541.
doi:10.1214/08-aoas215
.
Fan J, Li R (2001).
“Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties.”
Journal of the American Statistical Association, 96(456), 1348–1360.
doi:10.1198/016214501753382273
.
Wang Y, Fan Q, Zhu L (2018).
“Variable Selection and Estimation using a Continuous Approximation to the \(L_0\) Penalty.”
Annals of the Institute of Statistical Mathematics, 70(1), 191–214.
doi:10.1007/s10463-016-0588-3
.
Wang Y, Zhu L (2016).
“Variable Selection and Parameter Estimation with the Atan Regularization Method.”
Journal of Probability and Statistics, 2016, 6495417.
doi:10.1155/2016/6495417
.
Zou H (2006).
“The Adaptive Lasso and Its Oracle Properties.”
Journal of the American Statistical Association, 101(476), 1418–1429.
doi:10.1198/016214506000000735
.