Provide information criteria for selecting tuning parameters.
Arguments
- hatOmega
The estimated precision matrix.
- S
The sample covariance matrix.
- n
An integer specifying the sample size.
- crit
A string specifying the tuning parameter selection criterion to use. Available options include:
"AIC": Akaike information criterion (Akaike 1973) .
"BIC": Bayesian information criterion (Schwarz 1978) .
"EBIC": extended Bayesian information criterion (Foygel and Drton 2010) .
"HBIC": high dimensional Bayesian information criterion (Wang et al. 2013; Fan et al. 2017) .
- ebic.tuning
A scalar (default = 0.5) specifying the tuning parameter to calculate for
crit = "EBIC"
.
References
Akaike H (1973).
“Information Theory and an Extension of the Maximum Likelihood Principle.”
In Petrov BN, Csáki F (eds.), Second International Symposium on Information Theory, 267–281.
Akad\'emiai Kiad\'o, Budapest, Hungary.
Fan J, Liu H, Ning Y, Zou H (2017).
“High Dimensional Semiparametric Latent Graphical Model for Mixed Data.”
Journal of the Royal Statistical Society Series B: Statistical Methodology, 79(2), 405–421.
doi:10.1111/rssb.12168
.
Foygel R, Drton M (2010).
“Extended Bayesian Information Criteria for Gaussian Graphical Models.”
In Lafferty J, Williams C, Shawe-Taylor J, Zemel R, Culotta A (eds.), Advances in Neural Information Processing Systems 23 (NIPS 2010), 604–612.
Schwarz G (1978).
“Estimating the Dimension of a Model.”
The Annals of Statistics, 6(2), 461–464.
doi:10.1214/aos/1176344136
.
Wang L, Kim Y, Li R (2013).
“Calibrating Nonconvex Penalized Regression in Ultra-High Dimension.”
The Annals of Statistics, 41(5), 2505–2536.
doi:10.1214/13-AOS1159
.